

M6-MW

Semi-welded plate heat exchanger

Applications

Heating and cooling of aggressive media. Duties in refrigeration installations.

Standard design

The plate heat exchanger consists of a pack of corrugated metal plates with portholes for the passage of the two fluids between which heat transfer will take place.

The plate pack is assembled between a fix frame plate and a movable pressure plate and compressed by tightening bolts. The semi-welded plates combine the flexibility and service-ability of the gasketed heat exchangers with the assurance against leakage of the welded heat exchangers. In the plate arrangement, every other channel is welded, and every other channel is gasketed. The number of plates is determined by the flow rate, physical properties of the fluids, pressure drop and temperature program. The plate corrugations promote fluid turbulence and support the plates against differential pressure.

The semi-welded plate heat exchanger is provided with gaskets specifically designed to resist aggressive media. The non-aggressive media flows in the gasketed channels. This construction means that it can easily be dismantled, for example for exchanging gaskets or for inspection and cleaning of the gasketed channels.

Corrosion-resistant plate materials, the absence of pressure retaining welds, double gasket seals, and a flexible yet vibration resistant design - to assure long life and trouble free operation.

The frame plate and the pressure plate are suspended from an upper carrying bar and located by a lower guiding bar, both of which are fixed to a support column. Connections are located in the frame plate or, if either or both fluids make more than a single pass within the unit, in the frame and pressure plates.

Typical capacities

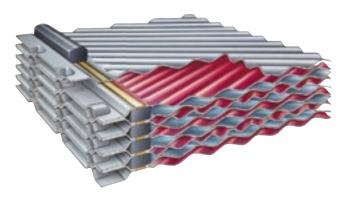
Liquid flow rate

Up to 16 kg/s, depending on media, permitted pressue drop and temperature program.

Refrigeration duties

10-70 RT/35-250 kW

Plate types


M6-MW

Frame types

FG and FD

M6-MWFG

Cross section of a semi-welded plate heat exchanger

Channels are formed between the plates and the corner ports are arranged so that the two media flow through alternate channels. The heat is transferred through the plate between the channels, and complete counter-current flow is created for highest possible efficiency. The corrugation of the plates provides the passage between the plates, supports each plate against the adjacent one and enhances the turbulence, resulting in efficient heat transfer.

Standard materials

Frame plate

Mild steel, Epoxy painted

Nozzles

Carbon steel

Metal lined; Stainless steel, Titanium

Plates

Stainless steel AISI 316 or Titanium

Gaskets

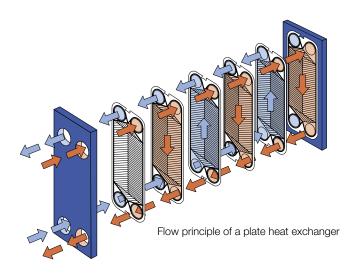
Field gaskets Nitrile, EPDM
Ring gaskets Chloroprene, EPDM

Connections

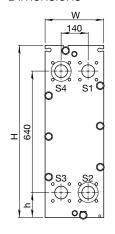
FG PED Size 50 mm DIN PN16 FG ASME Size 2" ANSI 150 FD PED Size 50 mm DIN PN25 FD ASME Size 4" ANSI 300

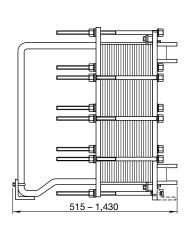
Technical data

Mechanical design pressure (g) / temperature


FG PED 1.6 MPa / -40 to 180°C FG ASME 150 psig / -40 to 320°F FD PED 2.5 MPa / -40 to 180°C FD ASME 300 psig / -40 to 320°F

Maximum heat transfer surface


 $30 \text{ m}^2 (330 \text{ sq. ft})$


Particulars required for quotation

- Flow rates or heat load
- Temperature program
- Physical properties of liquids in question (if not water)
- Desired working pressure
- Maximum permitted pressure drop
- Available steam pressure

Dimensions

Measurements (mm)

Type	Н	W	h
M6-FG	920	320	140
M6-FD	940	330	150

The number of tightening bolts may vary depending on pressure rating.

EPM00057EN 0407

All rights reserved for changes in specifications

THERMAL TRANSFER SYSTEMS, INC. SALES@THERMALTRANSFERSYSTEMS.COM PH: 800-527-0131 FAX: 972-242-7568

M10-BW

Semi-welded plate heat exchanger

Applications

Heating and cooling of aggressive media. Duties in refrigeration installations.

Standard design

The plate heat exchanger consists of a pack of corrugated metal plates with portholes for the passage of the two fluids between which heat transfer will take place.

The plate pack is assembled between a fix frame plate and a movable pressure plate and compressed by tightening bolts. The semi-welded plates combine the flexibility and service-ability of the gasketed heat exchangers with the assurance against leakage of the welded heat exchangers. In the plate arrangement, every other channel is welded, and every other channel is gasketed. The number of plates is determined by the flow rate, physical properties of the fluids, pressure drop and temperature program. The plate corrugations promote fluid turbulence and support the plates against differential pressure.

The semi-welded plate heat exchanger is provided with gaskets specifically designed to resist aggressive media. The non-aggressive med ia flows in the gasketed channels. This construction means that it can easily be dismantled, for example for exchanging gaskets or for inspection and cleaning of the gasketed channels.

Corrosion-resistant plate materials, the absence of pressure retaining welds, double gasket seals, and a flexible yet vibration resistant design - to assure long life and trouble free operation.

The frame plate and the pressure plate are suspended from an upper carrying bar and located by a lower guiding bar, both of which are fixed to a support column. Connections are located in the frame plate or, if either or both fluids make more than a single pass within the unit, in the frame and pressure plates.

Typical capacities

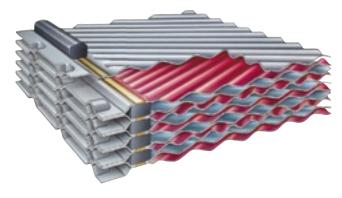
Liquid flow rate

Up to 50 kg/s, depending on media, permitted pressue drop and temperature program.

Refrigeration duties

50-250 RT/175-875 kW

Plate types


M10-BW

Frame types

FG, FD and REF

M10-BW

Cross section of a semi-welded plate heat exchanger

Channels are formed between the plates and the corner ports are arranged so that the two media flow through alternate channels. The heat is transferred through the plate between the channels, and complete counter-current flow is created for highest possible efficiency. The corrugation of the plates provides the passage between the plates, supports each plate against the adjacent one and enhances the turbulence, resulting in efficient heat transfer.

Standard materials

Frame plate

Mild steel, Epoxy painted

Nozzles

Carbon steel

Metal lined; Stainless steel, Titanium

Plates

Stainless steel AISI 316 or Titanium

Gaskets

Field gaskets Nitrile, EPDM
Ring gaskets Chloroprene, EPDM

Connections

 FG
 PED
 Size 100 mm
 DIN PN16

 FG
 ASME
 Size 4"
 ANSI 150

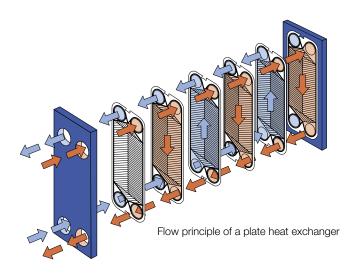
 FD
 PED
 Size 100 mm
 DIN PN25

 FD
 ASME
 Size 4"
 ANSI 300

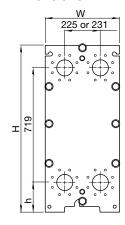
 REF
 PED
 Size 100 mm
 Pipe

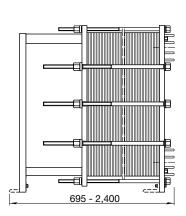
Technical data

Mechanical design pressure (g) / temperature


2.5 MPa / -50 to 150°C

FG PED 1.6 MPa / 180°C FG ASME 150 psig / 350°F FD PED 2.5 MPa / -50 to 180°C FD ASME 300 psig / -40 to 350°F


Maximum heat transfer surface


75 m² (825 sq. ft)

REF PED

Dimensions

Measurements (mm)

Туре	Н	W	h
M10-FG	1084	470	215
M10-FD	981	470	131
M10-FD ASME	1084	470	215
M10-BW REF	1110	470	163

The number of tightening bolts may vary depending on pressure rating.

Particulars required for quotation

- Flow rates or heat load
- Temperature program
- Physical properties of liquids in question (if not water)
- Desired working pressure
- Maximum permitted pressure drop
- Available steam pressure

EPM00058EN 0407

All rights reserved for changes in specifications

MK15-BW

Semi-welded plate heat exchanger

Applications

Heating and cooling of aggressive media. Duties in refrigeration installations.

Standard design

The plate heat exchanger consists of a pack of corrugated metal plates with portholes for the passage of the two fluids between which heat transfer will take place.

The plate pack is assembled between a fix frame plate and a movable pressure plate and compressed by tightening bolts. The semi-welded plates combine the flexibility and service-ability of the gasketed heat exchangers with the assurance against leakage of the welded heat exchangers. In the plate arrangement, every other channel is welded, and every other channel is gasketed. The number of plates is determined by the flow rate, physical properties of the fluids, pressure drop and temperature program. The plate corrugations promote fluid turbulence and support the plates against differential pressure.

The semi-welded plate heat exchanger is provided with gaskets specifically designed to resist aggressive media. The non-aggressive media flows in the gasketed channels. This construction means that it can easily be dismantled, for example for exchanging gaskets or for inspection and cleaning of the gasketed channels.

Corrosion-resistant plate materials, the absence of pressure retaining welds, double gasket seals, and a flexible yet vibration resistant design - to assure long life and trouble free operation.

The frame plate and the pressure plate are suspended from an upper carrying bar and located by a lower guiding bar, both of which are fixed to a support column. Connections are located in the frame plate or, if either or both fluids make more than a single pass within the unit, in the frame and pressure plates.

Typical capacities

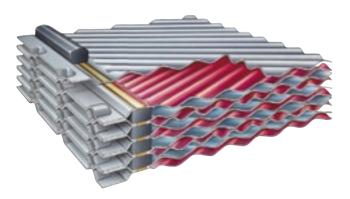
Liquid flow rate

Up to 80 kg/s, depending on media, permitted pressue drop and temperature program.

Refrigeration

100-450 RT/350-1575 kW

Plate types


MK15-BW

Frame types

FG and FD

MK15-BWFG

Cross section of a semi-welded plate heat exchanger

Channels are formed between the plates and the corner ports are arranged so that the two media flow through alternate channels. The heat is transferred through the plate between the channels, and complete counter-current flow is created for highest possible efficiency. The corrugation of the plates provides the passage between the plates, supports each plate against the adjacent one and enhances the turbulence, resulting in efficient heat transfer.

Standard materials

Frame plate

Mild steel, Epoxy painted

Nozzles

Carbon steel

Metal lined; Stainless steel, Alloy 20/18/6 or Titanium

Plates

Stainless steel AISI 316, Alloy 20/18/6 or Titanium

Gaskets

Field gaskets Nitrile, EPDM

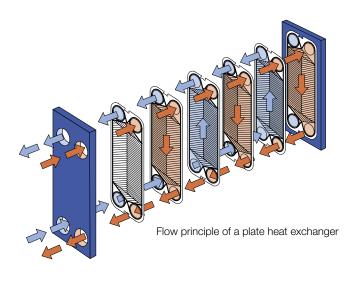
Ring gaskets Chloroprene, EPDM and Nitrile

Connections

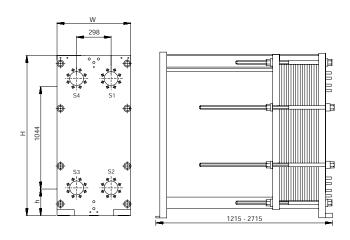
FG PED Size 150 mm DIN PN16 FG ASME Size 6" ANSI 150 FD PED Size 150 mm DIN PN25 FD ASME Size 6" ANSI 300

Technical data

Mechanical design pressure (g) / temperature


FG PED 1.6 MPa / -50 to 180°C FG ASME 150 psig / -40 to 350°F FD PED 2.5 MPa / -50 to 180°C FD ASME 300 psig / -40 to 350°F

Maximum heat transfer surface


165 m² (1780 sq. ft)

Particulars required for quotation

- Flow rates or heat load
- Temperature program
- Physical properties of liquids in question (if not water)
- Desired working pressure
- Maximum permitted pressure drop
- Available steam pressure

Dimensions

Measurements (mm)

Type	Н	W	h
MK15-FG	1486	650	221
MK15-FD	1486	650	221

The number of tightening bolts may vary depending on pressure rating.

EPM00059EN 0407

All rights reserved for changes in specifications

T20MW/BW

Semi welded plate heat exchanger

Applications

Semi-welded plate heat exchanger for general heating, cooling and heat recovery of aggressive media in one channel.

Standard design

The plate heat exchanger consists of a pack of corrugated metal plates with portholes for the passage of the two fluids between which heat transfer will take place.

The plate pack is assembled between a fix frame plate and a movable pressure plate and compressed by tightening bolts. The semi-welded plates combine the flexibility and serviceability of the gasketed heat exchangers with the assurance against leakage of the welded heat exchangers. In the plate arrangement, every other channel is welded, and every other channel is gasketed. The number of plates is determined by the flow rate, physical properties of the fluids, pressure drop and temperature program. The plate corrugations promote fluid turbulence and support the plates against differential pressure.

The semi-welded plate heat exchanger is provided with gaskets specifically designed to resist aggressive media. The non-aggressive media flows in the gasketed channels. This construction means that it can easily be dismantled, for example for exchanging gaskets or for inspection and cleaning of the gasketed channels.

The semi welded plate heat exchanger features corrosionresistant plate material, absence of pressure retaining welds, double gasket seals, and a flexible yet vibration-resistant design all to assure long life and trouble free operation.

The frame plate and the pressure plate are suspended from an upper carrying bar and located by a lower guiding bar, both of which are fixed to a support column.

Connections are located in the frame plate or, if either or both fluids make more than a single pass within the unit, in the frame and pressure plates.

T20MW/BW

Typical capacities

Liquid flow rate

Up to 677 kg/s, depending on media, permitted pressure drop and temperature program.

Plate types

T20MW and T20BW plates

Frame types

FG and FS

Channels are formed between the plates and the corner ports are arranged so that the two media flow through alternate channels. The heat is transferred through the plate between the channels, and complete counter-current flow is created for highest possible efficiency. The corrugation of the plates provides the passage between the plates, supports each plate against the adjacent one and enhances the turbulence, resulting in efficient heat transfer.

STANDARD MATERIALS

Frame plate

Mild steel, Epoxy painted

Nozzles

Carbon steel

Metal lined: Stainless steel, Titanium

Plates

Stainless steel AISI 316 or Titanium

Gaskets

Field gaskets Nitrile, EPDM
Ring gaskets Chloroprene, EPDM

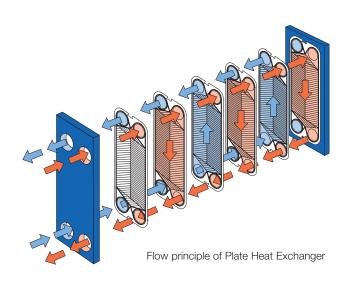
Connections

 FG PED
 Size 200 mm
 DIN PN10/16

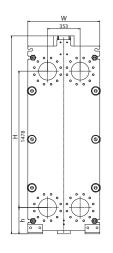
 FG ASME
 Size 8"
 ASME CI. 100/150

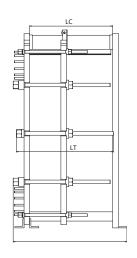
 FS PED
 Size 200 mm
 DIN PN25/40

 FS ASME
 Size 8"
 ASME CI. 300/400


TECHNICAL DATA

Mechanical design pressure (g) / temperature


FG PED 1.6 MPa / 180 °C FG ASME 150 psig / 350 °F FS PED 3.0 MPa / 160 °C FS ASME 400 psig / 320 °F


Maximum heat transfer surface

425 m² (4,550 sq. ft)

Dimensions

Measurements (mm)

Туре	Н	W	h
T20-MWFG	2145	780	285

Particulars required for quotation

- Flow rates or heat load
- Temperature program
- Physical properties of liquids in question (if not water)
- Desired working pressure
- Maximum permitted pressure drop
- Available steam pressure

PPM00090EN 0401

Alfa Laval reserves the right to change specifications without prior notification.

THERMAL TRANSFER SYSTEMS, INC. SALES@THERMALTRANSFERSYSTEMS.CO M

PH: 800-527-0131 FAX: 972-242-7568

MA30 W

Semi welded plate heat exchanger

Applications

Semi-welded plate heat exchanger for general heating, cooling and heat recovery of aggressive media in one channel.

Standard design

The plate heat exchanger consists of a pack of corrugated metal plates with portholes for the passage of the two fluids between which heat transfer will take place.

The plate heat exchanger consists of a pack of corrugated metal plates with portholes for the passage of the two fluids between which heat transfer will take place.

The plate pack is assembled between a fix frame plate and a movable pressure plate and compressed by tightening bolts. The semi-welded plates combine the flexibility and service-ability of the gasketed heat exchangers with the assurance against leakage of the welded heat exchangers. In the plate arrangement, every other channel is welded, and every other channel is gasketed. The number of plates is determined by the flow rate, physical properties of the fluids, pressure drop and temperature program. The plate corrugations promote fluid turbulence and support the plates against differential pressure.

The semi-welded plate heat exchanger is provided with gaskets specifically designed to resist aggressive media. The non-aggressive media flows in the gasketed channels. This construction means that it can easily be dismantled, for example for exchanging gaskets or for inspection and cleaning of the gasketed channels.

Corrosion-resistant plate materials, the absence of pressure retaining welds, double gasket seals, and a flexible yet vibration-resistant design - to assure long life and trouble free operation.

The frame plate and the pressure plate are suspended from an upper carrying bar and located by a lower guiding bar, both of which are fixed to a support column.

Connections are located in the frame plate or, if either or both fluids make more than a single pass within the unit, in the frame and pressure plates.

MA30-WFG

Typical capacities

Liquid flow rate

Up to 361 kg/s, depending on media, permitted pressure drop and temperature program.

Plate types

MA30W plates

Frame types

FG, FD and FS

Channels are formed between the plates and the corner ports are arranged so that the two media flow through alternate channels. The heat is transferred through the plate between the channels, and complete counter-current flow is created for highest possible efficiency. The corrugation of the plates provides the passage between the plates, supports each plate against the adjacent one and enhances the turbulence, resulting in efficient heat transfer.

STANDARD MATERIALS

Frame plate

Mild steel, Epoxy painted

Nozzles

Carbon steel

Metal lined: Stainless steel, Titanium

Plates

Stainless steel AISI 316 or Titanium

Gaskets

Field gaskets Nitrile, EPDM
Ring gaskets Chloroprene, EPDM

Connections

 FG
 PED
 Size 300/350 mm
 DIN 2501 PN16

 FG
 ASME
 Size 12"/14"
 ANSI 150

 FD
 PED
 Size 300/350 mm
 DIN 2501 PN25

 FD
 ASME
 Size 12"/14"
 ANSI 300

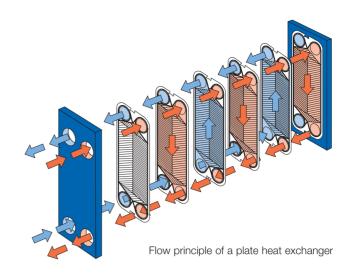
FS PED Size 300/350 mm DIN 2501 PN25/PN40

FS ASME Size 12"/14" ANSI 400

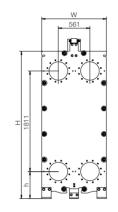
TECHNICAL DATA

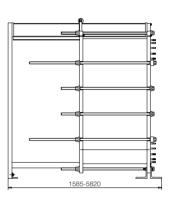
Mechanical design pressure (g) / temperature

FG PED 1.6 MPa / 180 °C FG ASME 150 psig / 350 °F PED 2.5 MPa / 180 °C FD ASME 300 psig / 350 °F FS PED 3.0 MPa / 160 °C FS ASME 400 psig / 320 °F


Maximum heat transfer surface

1131 m² (12.107 sq. ft)


Particulars required for quotation


- Flow rates or heat load
- Temperature program
- Physical properties of liquids in question (if not water)
- Desired working pressure
- Maximum permitted pressure drop
- Available steam pressure

PPM00029EN 0302

Dimensions

Measurements (mm)

Туре	Н	W	h
MA30-WFG	2940	1170	521
MA30-WFD	2940	1170	521
MA30-WFS	2940	1170	521

Alfa Laval reserves the right to change specifications without prior notification.

THERMAL TRANSFER SYSTEMS, INC. SALES@THERMALTRANSFERSYSTEMS.COM PH: 800-527-0131 FAX: 972-242-7568