FLUID COOLING | Industrial RM Series

FEATURES
- Mounts to Rear of Electric Motor – TEFC
- Utilizes Electric Motor Fan Air Flow
- Ideal for Case Drain Applications
- Compact, Efficient Design
- Low Flow & Heat Removal
- Mounts Behind Existing TEFC Motor for Compact, Low Cost Application
- SAE, NPT or Metric Conversion
- Mounting Brackets Included

Materials
- Tubes Copper
- Fins Aluminum
- Turbulators Aluminum
- Cabinet Steel with baked enamel finish
- Filter Stainless frame with washable media
- Manifolds Copper; RM-08 Steel; RM-19 & RM-24
- Connections Brass; RM-08 Steel; RM-19 & RM-24
- Nameplate Aluminum

How to Order - RM-08 Models Only

<table>
<thead>
<tr>
<th>RM</th>
<th>0</th>
<th>8</th>
<th>Number of Passes</th>
<th>Connection Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 - 1 Pass</td>
<td>1 - NPT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 - 2 Pass</td>
<td>2 - SAE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 - 4 Pass</td>
<td>3 - BSPP</td>
</tr>
</tbody>
</table>

How to Order - all models except RM-08 Size

<table>
<thead>
<tr>
<th>RM</th>
<th>Model Size Selected</th>
<th>Number of Passes</th>
<th>Connection Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 - 1 Pass</td>
<td>1 - NPT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 - 2 Pass</td>
<td>2 - SAE</td>
</tr>
</tbody>
</table>

Motor not included.
Dimensions

RM-08-1
One Pass

RM-08-2
Two Pass

RM-08-4
Four Pass

RM-19-1, RM-24-1
One Pass

RM-19-2, RM-24-2
Two Pass

Model	A	B	C	D	E	F	G	H	J	K	L	M	N	NET WTS.
RM-19-1* | 13.62 | 16.50 | 5.11 | 10.31 | 15.00 | #12 | 3.05 | 14.75 | 7.38 | 6.81 | 10.38 | 5.81 | 7.50 | 16
RM-24-1* | 13.62 | 16.50 | 5.11 | 10.31 | 15.00 | #12 | 3.05 | 14.75 | 7.38 | 6.81 | 10.38 | 5.81 | 7.50 | 16

Note: We reserve the right to make reasonable design changes without notice. All dimensions are in inches.
Selection Procedure

Performance Curves are based on 50SSU oil leaving the cooler 40°F higher than the ambient air temperature used for cooling and 1800 RPM motor speed. This is also referred to as a 40° approach temperature.

STEP 1 **Determine the Heat Load.** This will vary with different systems, but typically coolers are sized to remove 25 to 50% of the input nameplate horsepower.
(Example: 100 HP Power Unit x .33 = 33 HP Heat load. For 1200 RPM motors, multiply Heat Load by 1.5.)
If BTU/Hr. is known: HP = \(\frac{BTU/Hr}{2545} \)

STEP 2 **Determine Approach Temperature.**
Desired oil leaving cooler °F – Ambient air temp. °F = Actual Approach

STEP 3 **Determine Curve Horsepower Heat Load.** Enter the information from above:
Horsepower heat load x \(\frac{40 \times Cv}{Actual \ Approach} \) = Curve Horsepower

STEP 4 **Enter curves** at oil flow through cooler and curve horsepower. Any curve above the intersecting point will work.

STEP 5 **Determine Oil Pressure Drop from Curves:**
- ● = 5 PSI
- ■ = 10 PSI
- ▲ = 20 PSI
Multiply pressure drop from curve by correction factor found in oil \(\Delta P \) correction curve.

Desired Reservoir Temperature

Return Line Cooling: Desired temperature is the oil temperature leaving the cooler. This will be the same temperature that will be found in the reservoir.

Off-Line Recirculation Cooling Loop: Desired temperature is the oil temperature entering the cooler. In this case, the oil temperature change must be determined so that the actual oil leaving temperature can be found. Calculate the oil temperature change (oil \(\Delta T \)) with this formula:
Oil \(\Delta T \) = \(\frac{BTU's/Hr}{(GPM \ Oil \ Flow \times 210)} \).
To calculate the oil leaving temperature from the cooler, use this formula:
Oil Leaving Temp. = Oil Entering Temp – Oil \(\Delta T \).
This formula may also be used in any application where the only temperature available is the entering oil temperature.

Oil Pressure Drop: Most systems can tolerate a pressure drop through the heat exchanger of 20 to 30 PSI. Excessive pressure drop should be avoided. Care should be taken to limit pressure drop to 5 PSI or less for case drain applications where high back pressure may damage the pump shaft seals.

Oil Temperature

Typical operating temperature ranges are:
- Hydraulic Motor Oil 110°F - 130°F
- Hydrostatic Drive Oil 130°F - 180°F
- Bearing Lube Oil 120°F - 160°F
- Lube Oil Circuits 110°F - 130°F
Curve Model TEFC Motor Frame Sizes

<table>
<thead>
<tr>
<th>Curve</th>
<th>Model</th>
<th>TEFC Motor Frame Sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RM-08-1*</td>
<td>48-184</td>
</tr>
<tr>
<td>2</td>
<td>RM-08-2*</td>
<td>213-256</td>
</tr>
<tr>
<td>3</td>
<td>RM-08-4*</td>
<td>254-286</td>
</tr>
<tr>
<td>4</td>
<td>RM-19-1*</td>
<td>324-365</td>
</tr>
<tr>
<td>5</td>
<td>RM-19-2*</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>RM-24-1*</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>RM-24-2*</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>RM-24-1*</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>RM-24-2*</td>
<td></td>
</tr>
</tbody>
</table>

Curve Viscosity Correction

<table>
<thead>
<tr>
<th>Average Oil Temp °F</th>
<th>SAE 5 110 SSU at 100°F</th>
<th>40 SSU at 210°F</th>
<th>SAE 10 150 SSU at 100°F</th>
<th>43 SSU at 210°F</th>
<th>SAE 20 275 SSU at 100°F</th>
<th>50 SSU at 210°F</th>
<th>SAE 30 500 SSU at 100°F</th>
<th>65 SSU at 210°F</th>
<th>SAE 40 750 SSU at 100°F</th>
<th>75 SSU at 210°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1.14</td>
<td>1.22</td>
<td>1.35</td>
<td>1.58</td>
<td>1.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>1.01</td>
<td>1.05</td>
<td>1.11</td>
<td>1.21</td>
<td>1.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>0.99</td>
<td>1.00</td>
<td>1.01</td>
<td>1.08</td>
<td>1.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>0.95</td>
<td>0.98</td>
<td>0.99</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>